Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Alexandria Engineering Journal ; 75:81-113, 2023.
Article in English | ScienceDirect | ID: covidwho-2328114

ABSTRACT

Biomathematics has become one of the most significant areas of research as a result of interdisciplinary study. Chronic diseases sometimes referred to as non-communicable and communicable diseases, are conditions that develop over an extended period as a result of different factors like genetics, lifestyle, and environment. The most important common types of disease are cardiovascular, alcohol, cancer, and diabetes. More than three-quarters of the world's (31.4 million) deaths occur in low- and middle-income nations, which are disproportionately affected by different infections. Fractional Calculus is a prominent topic for research within the discipline of Applied Mathematics due to its usefulness in solving problems in many different branches of science, engineering, and medicine. Recent researchers have identified the importance of mathematical tools in various disease models as being very useful to study the dynamics with the help of fractional and integer calculus modeling. Due to the complexity of the underlying connections, both deterministic and stochastic epidemiological models are founded on an inadequate understanding of the infectious network. Over the past several years, the use of different fractional operators to model the problem has grown, and it is now a common way to study how epidemics spread. Recently, researchers have actively considered fractional calculus to study different diseases like COVID-19, cancer, TB, HIV, dengue fever, diabetes, cholera, pine welts, smoking and heart attacks, etc. With the help of fractional operator, we modified a mathematical model for the dynamical transmission, analysis, treatment, vaccination, and precaution leveling necessary to mitigate the negative impact of illness on society in the long run, overcoming the memory effect without defining or considering others parameters. In this review paper, we considered all the recent studies based on the fractional modeling of infectious and non-infectious diseases with different fractional operators such as Caputo, Caputo Fabrizio, ABC, and constant proportional with Caputo, etc. This review paper aims to bring all the information together by considering different fractional operators and their uses in the field of infectious disease modeling. The steps taken to accomplish the goal were developing a mathematical model, identifying the equilibrium point, figuring out the minimal reproductive number, and assessing the stability around the equilibrium point. For future direction, we consider the cancer model to study the growth cells of cancer and the impact of therapy to control infections. An equilibrium solution and an analysis of the behavior dynamics of the cell spread with treatment in the form of chemotherapy were obtained. The simulation shows that the population of cancer cells is influenced by the pace of cancer cell growth with the Caputo fractional derivative. The acquired results show how effective and precise the suggested approach is in helping to better understand how chemotherapy works. Chemotherapy medications have been found to increase immunity against particular cancer by reducing the number of tumor cells. Further, we suggested some future work directions with the help of the new hybrid fractional operator. Our innovative methodology might have significant effects on global stakeholders, policymakers, and national health systems. The current strategies for controlling outbreaks and the vaccination and prevention policies that have been implemented would benefit from a more accurate representation of the dynamics of contagious diseases, which necessitates the development of highly complex mathematical models. Microorganisms, interactions between individuals or groups, and environmental, social, economic, and demographic factors on a broader scale are all examples.

2.
Fractals ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2320639

ABSTRACT

Recently, Atangana proposed new operators by combining fractional and fractal calculus. These recently proposed operators, referred to as fractal–fractional operators, have been widely used to study complex dynamics. In this paper, the COVID-19 model is considered via Atangana–Baleanu fractal-fractional operator. The Lyapunov stability for the model is derived for first and second derivative. Numerical results have developed through Lagrangian-piecewise interpolation for the different fractal–fractional operators. We develop numerical outcomes through different differential and integral fractional operators like power-law, exponential law, and Mittag-Leffler kernel. To get a better outcome of the proposed scheme, numerical simulation is made with different kernels having the memory effects with fractional parameters. [ FROM AUTHOR] Copyright of Fractals is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Math Comput Simul ; 207: 499-520, 2023 May.
Article in English | MEDLINE | ID: covidwho-2274771

ABSTRACT

In this study, we formulated and analyzed a deterministic mathematical model for the co-infection of COVID-19 and tuberculosis, to study the co-dynamics and impact of each disease in a given population. Using each disease's corresponding reproduction number, the existence and stability of the disease-free equilibrium were established. When the respective threshold quantities R C , and R T are below unity, the COVID-19 and TB-free equilibrium are said to be locally asymptotically stable. The impact of vaccine (i.e., efficacy and vaccinated proportion) and the condition required for COVID-19 eradication was examined. Furthermore, the presence of the endemic equilibria of the sub-models is analyzed and the criteria for the phenomenon of backward bifurcation of the COVID-19 sub-model are presented. To better understand how each disease condition impacts the dynamics behavior of the other, we investigate the invasion criterion of each disease by computing the threshold quantity known as the invasion reproduction number. We perform a numerical simulation to investigate the impact of threshold quantities ( R C , R T ) with respect to their invasion reproduction number, co-infection transmission rate ( ß c t ) , and each disease transmission rate ( ß c , ß t ) on disease dynamics. The outcomes established the necessity for the coexistence or elimination of both diseases from the communities. Overall, our findings imply that while COVID-19 incidence decreases with co-infection prevalence, the burden of tuberculosis on the human population increases.

4.
Mathematics ; 11(1):142, 2023.
Article in English | MDPI | ID: covidwho-2166702

ABSTRACT

A mathematical model revealing the transmission mechanism of COVID-19 is produced and theoretically examined, which has helped us address the disease dynamics and treatment measures, such as vaccination for susceptible patients. The mathematical model containing the whole population was partitioned into six different compartments, represented by the SVEIQR model. Important properties of the model, such as the nonnegativity of solutions and their boundedness, are established. Furthermore, we calculated the basic reproduction number, which is an important parameter in infection models. The disease-free equilibrium solution of the model was determined to be locally and globally asymptotically stable. When the basic reproduction number R0 is less than one, the disease-free equilibrium point is locally asymptotically stable. To discover the approximative solution to the model, a general numerical approach based on the Haar collocation technique was developed. Using some real data, the sensitivity analysis of R0 was shown. We simulated the approximate results for various values of the quarantine and vaccination populations using Matlab to show the transmission dynamics of the Coronavirus-19 disease through graphs. The validation of the results by the Simulink software and numerical methods shows that our model and adopted methodology are appropriate and accurate and could be used for further predictions for COVID-19.

5.
Alexandria Engineering Journal ; 2022.
Article in English | ScienceDirect | ID: covidwho-2158325

ABSTRACT

The SARS-CoV-2 pandemic is an urgent problem with unpredictable properties and is widespread worldwide through human interactions. This work aims to use Caputo-Fabrizio fractional operators to explore the complex action of the Covid-19 Omicron variant. A fixed-point theorem and an iterative approach are used to prove the existence and singularity of the model's system of solutions. Laplace transform is used to generalize the fractional order model for stability and unique solution of the iterative scheme. A numerical scheme is also constructed by using an exponential law kernel for the computational and simulation of the Covid-19 Model. The graphs demonstrate that the fractional model of Covid-19 is accurate. In the sense of Caputo-Fabrizio, one can obtain trustworthy information about the model in either an integer or non-integer scenario. This sense also provides useful information about the model's complexity.

6.
International Journal of Computational Intelligence Systems ; 15(1), 2022.
Article in English | EuropePMC | ID: covidwho-2034387

ABSTRACT

Numerical treatment of the COVID-19 transposition and severity in Romania and Pakistan has been presented in this study, i.e., ANN-GA-SQP through artificial neural network genetic algorithms (ANN-GA) and sequential quadratic programming (SQP), a design of an integrated computational intelligent paradigm, COVID-19 is widely considered to be the greatest health threat humanity has ever faced. In terms of both health and economics, COVID-19 is a huge disaster. Many academics have looked at the COVID-19 model in their research papers, although they use different traditional techniques to represent it. The use of hybrid suggested solutions to solve this issue in the present article is significant, demonstrating the study's novelty. The SIR model of COVID-19 consists of a susceptible, infectious, and recovered class of population. The activation function for the construction of functions based on fitness in mean squared error sense is developed using nonlinear equations of the COVID-19 SIR model for the best performance of ANN-GA-SQP with the combined potential of GA and SQP of a network. While detailed refining is done with efficient local search with SQP, GAs operates as a global search. In addition, a neuron analysis will be presented to verify the effectiveness and complexity of the proposed method. Adam’s numerical methodology is applied to compare the sustainability and efficacy of the presented paradigm. Analytical evaluations of mean, median, and semi-interquartile range values, as well as Theil’s inequality coefficients, root mean squared error, and mean of absolute deviation) values have been observed. The convergence and correctness of the ANN-GA-SQP approach are further validated by statistical analyses.

7.
International Journal of Modeling, Simulation, and Scientific Computing ; 2022.
Article in English | Web of Science | ID: covidwho-2020371

ABSTRACT

In December 2019, the novel Coronavirus, also known as 2019-nCoV or SARS-CoV-2 or COVID-19, was first recognized as a deadly disease in Wuhan, China. In this paper, we analyze two different nonclassical Coronavirus models to observe the outbreaks of this disease. Caputo and Caputo-Fabrizio (C-F) fractional derivatives are considered to simulate the given epidemic models by using two separate methods. We perform all required graphical simulations with the help of real data to demonstrate the behavior of the proposed systems. We observe that the given schemes are highly effective and suitable to analyze the dynamics of Coronavirus. We find different natures of the given model classes for both Caputo and C-F derivative sense. The main contribution of this study is to propose a novel framework of modeling to show how the fractional-order solutions can describe disease dynamics much more clearly as compared to integer-order operators. The motivation to use two different fractional derivatives, Caputo (singular-type kernel) and Caputo-Fabrizio (exponential decay-type kernel) is to explore the model dynamics under different kernels. The applications of two various kernel properties on the same model make this study more effective for scientific observations.

8.
International Journal of Modern Physics B: Condensed Matter Physics|Statistical Physics|Applied Physics ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1993094

ABSTRACT

Time delays play an important part in modeling the fact that one cannot be communicable for a long time after becoming sick. Delay can be triggered by a variety of epidemiological situations. The most egregious causes of a delay are infection latency in the vector and infection latency in the infected host. The dynamics of susceptible, infected, recovered and cross-immune (SIRC) classed-based model having cross-immune and time-delay in the transmission for spread of COVID-19 abbreviated as (SIRC-CTC-19) are investigated in this study using an intelligent numerical computing paradigm based on the Levenberg–Marquardt Method backpropagated by neural networks (LM-BPNN). The model is mathematically governed by a system of ordinary differential equations that depicts the four nodes as susceptible, infected, recovered and cross-immune ones (SIRC) nodes with cross-immune class and time-delay in transmission components for COVID-19 dissemination (CTC-19). The reference solution of the SIRC model for the spread of COVID-19 is produced by using the explicit Runge–Kutta method for the many scenarios of this model arising from altering delay with regard to time. This reference solution permits the use of evolutionary computing to solve the SIRC-CTC-19 using train, validate and test techniques. The proposed LM-BPNN method’s accuracy has been proven by its results overlapping with explicit Runge–Kutta results Calculation of regression metrics, error analysis of histogram illustrations and learning curves on MSE effectively augment the LM-BPNN’s accuracy, convergence and reliability in solving the SIRC-CTC-19 model. [ FROM AUTHOR] Copyright of International Journal of Modern Physics B: Condensed Matter Physics;Statistical Physics;Applied Physics is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

9.
Results Phys ; 29: 104639, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1364447

ABSTRACT

In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are clustered. In the analysis, the maximum cluster size is treated as a variable and is varied from 5 to 50 in both algorithms to find out an optimum number. The performance and validity indices of the clusters formed are analyzed to assess the quality of clusters. The validity indices to understand all the COVID-19 clusters' quality are analysed based on the Zahid SC (Separation Compaction) index, Xie-Beni Index, Fukuyama-Sugeno Index, Validity function, PC (performance coefficient), and CE (entropy) indexes. The analysis results pointed out that five clusters were identified as a major centroid where the pandemic looks concentrated. Additionally, the observations revealed that mainly the pandemic is distributed easily at any global location, and there are several centroids of COVID-19, which primarily act as epicentres. However, the three main COVID-19 clusters identified are 1) cases with value <50,000, 2) cases with a value between 0.1 million to 2 million, and 3) cases above 2 million. These centroids are located in the US, Brazil, and India, where the rest of the small clusters of the pandemic look oriented. Furthermore, the Fc-M technique seems to provide a much better cluster than the c-M algorithm.

10.
Alexandria Engineering Journal ; 2021.
Article in English | ScienceDirect | ID: covidwho-1330469

ABSTRACT

In this article, we studied the fractional dynamics of the most dangerous deathly disease which outbreaks have been recorded all over the world, called 2019-nCOV or COVID-19. We used the numerical values of the given parameters based on the real data of the 2019-nCOV cases in Spain for the time duration of 25 February to 9 October 2020. We performed our observations with the help of the Atangana-Baleanu (AB) non-integer order derivative. We analysed the optimal control problem in a fractional sense for giving the information on all necessary health care issues. We applied the Predictor-Corrector method to do the important graphical simulations. Also, we provided the analysis related to the existence of a unique solution and the stability of the proposed scheme. The aim and the main contribution of this research is to analyse the structure of novel coronavirus in Spain at different transmission rate and to indicate the danger of this deathly disease for future with the introduction of some optimal controls and health care measures.

11.
Results Phys ; 25: 104285, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1221023

ABSTRACT

Mathematical modeling plays an important role to better understand the disease dynamics and designing strategies to manage quickly spreading infectious diseases in lack of an effective vaccine or specific antivirals. During this period, forecasting is of utmost priority for health care planning and to combat COVID-19 pandemic. In this study, we proposed and extended classical SEIR compartment model refined by contact tracing and hospitalization strategies to explain the COVID-19 outbreak. We calibrated our model with daily COVID-19 data for the five provinces of India namely, Kerala, Karnataka, Andhra Pradesh, Maharashtra, West Bengal and the overall India. To identify the most effective parameters we conduct a sensitivity analysis by using the partial rank correlation coefficients techniques. The value of those sensitive parameters were estimated from the observed data by least square method. We performed sensitivity analysis for R 0 to investigate the relative importance of the system parameters. Also, we computed the sensitivity indices for R 0 to determine the robustness of the model predictions to parameter values. Our study demonstrates that a critically important strategy can be achieved by reducing the disease transmission coefficient ß s and clinical outbreak rate q a to control the COVID-19 outbreaks. Performed short-term predictions for the daily and cumulative confirmed cases of COVID-19 outbreak for all the five provinces of India and the overall India exhibited the steady exponential growth of some states and other states showing decays of daily new cases. Long-term predictions for the Republic of India reveals that the COVID-19 cases will exhibit oscillatory dynamics. Our research thus leaves the option open that COVID-19 might become a seasonal disease. Our model simulation demonstrates that the COVID-19 cases across India at the end of September 2020 obey a power law.

12.
Results Phys ; 23: 103994, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1176920

ABSTRACT

This paper investigates the dynamics of a COVID-19 stochastic model with isolation strategy. The white noise as well as the Lévy jump perturbations are incorporated in all compartments of the suggested model. First, the existence and uniqueness of a global positive solution are proven. Next, the stochastic dynamic properties of the stochastic solution around the deterministic model equilibria are investigated. Finally, the theoretical results are reinforced by some numerical simulations.

13.
Computers, Materials, & Continua ; 67(3):2933-2953, 2021.
Article | ProQuest Central | ID: covidwho-1112960

ABSTRACT

Recently, the world is facing the terror of the novel corona-virus, termed as COVID-19. Various health institutes and researchers are continuously striving to control this pandemic. In this article, the SEIAR (susceptible, exposed, infected, symptomatically infected, asymptomatically infected and recovered) infection model of COVID-19 with a constant rate of advection is studied for the disease propagation. A simple model of the disease is extended to an advection model by accommodating the advection process and some appropriate parameters in the system. The continuous model is transposed into a discrete numerical model by discretizing the domains, finitely. To analyze the disease dynamics, a structure preserving non-standard finite difference scheme is designed. Two steady states of the continuous system are described i.e., virus free steady state and virus existing steady state. Graphical results show that both the steady states of the numerical design coincide with the fixed points of the continuous SEIAR model. Positivity of the state variables is ensured by applying the M-matrix theory. A result for the positivity property is established. For the proposed numerical design, two different types of the stability are investigated. Nonlinear stability and linear stability for the projected scheme is examined by applying some standard results. Von Neuman stability test is applied to ensure linear stability. The reproductive number is described and its pivotal role in stability analysis is also discussed. Consistency and convergence of the numerical model is also studied. Numerical graphs are presented via computer simulations to prove the worth and efficiency of the quarantine factor is explored graphically, which is helpful in controlling the disease dynamics. In the end, the conclusion of the study is also rendered.

14.
Alexandria Engineering Journal ; 2021.
Article in English | ScienceDirect | ID: covidwho-1062201

ABSTRACT

The first reported case of coronavirus disease (COVID-19) in Brazil was confirmed on 25 February 2020 and then the number of symptomatic cases produced day by day. In this manuscript, we studied the epidemic peaks of the novel coronavirus (COVID-19) in Brazil by the successful application of Predictor-Corrector (P-C) scheme. For the proposed model of COVID-19, the numerical solutions are performed by a model framework of the recent generalized Caputo type non-classical derivative. Existence of unique solution of the given non-linear problem is presented in terms of theorems. A new analysis of epidemic peaks in Brazil with the help of parameter values cited from a real data is effectuated. Graphical simulations show the obtained results to classify the importance of the classes of projected model. We observed that the proposed fractional technique is smoothly work in the coding and very easy to implement for the model of non-linear equations. By this study we tried to exemplify the roll of newly proposed fractional derivatives in mathematical epidemiology. The main purpose of this paper is to predict the epidemic peak of COVID-19 in Brazil at different transmission rates. We have also attempted to give the stability analysis of the proposed numerical technique by the reminder of some important lemmas. At last we concluded that when the infection rate increases then the nature of the diseases changes by becoming more deathly to the population.

15.
Results Phys ; 21: 103772, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1003030

ABSTRACT

We discuss a fractional-order SIRD mathematical model of the COVID-19 disease in the sense of Caputo in this article. We compute the basic reproduction number through the next-generation matrix. We derive the stability results based on the basic reproduction number. We prove the results of the solution existence and uniqueness via fixed point theory. We utilize the fractional Adams-Bashforth method for obtaining the approximate solution of the proposed model. We illustrate the obtained numerical results in plots to show the COVID-19 transmission dynamics. Further, we compare our results with some reported real data against confirmed infected and death cases per day for the initial 67 days in Wuhan city.

16.
Sci Rep ; 10(1): 22268, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-989961

ABSTRACT

Recently, novel coronavirus is a serious global issue and having a negative impact on the economy of the whole world. Like other countries, it also effected the economy and people of Pakistan. According to the publicly reported data, the first case of novel corona virus in Pakistan was reported on 27th February 2020. The aim of the present study is to describe the mathematical model and dynamics of COVID-19 in Pakistan. To investigate the spread of coronavirus in Pakistan, we develop the SEIR time fractional model with newly, developed fractional operator of Atangana-Baleanu. We present briefly the analysis of the given model and discuss its applications using world health organization (WHO) reported data for Pakistan. We consider the available infection cases from 19th March 2020, till 31st March 2020 and accordingly, various parameters are fitted or estimated. It is worth noting that we have calculated the basic reproduction number [Formula: see text] which shows that virus is spreading rapidly. Furthermore, stability analysis of the model at disease free equilibrium DFE and endemic equilibriums EE is performed to observe the dynamics and transmission of the model. Finally, the AB fractional model is solved numerically. To show the effect of the various embedded parameters like fractional parameter [Formula: see text] on the model, various graphs are plotted. It is worth noting that the base of our investigation, we have predicted the spread of disease for next 200 days.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Epidemics/statistics & numerical data , Humans , Models, Theoretical , Pakistan/epidemiology , SARS-CoV-2/pathogenicity , World Health Organization
17.
Results Phys ; 20: 103716, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-989166

ABSTRACT

Nigeria, like most other countries in the world, imposes lockdown as a measure to curtail the spread of COVID-19. But, it is known fact that in some countries the lockdown strategy could bring the desired results while in some the situation could worsen the spread of the virus due to poor management and lack of facilities, palliatives and incentives. To this regard, we feel motivated to develop a new mathematical model that assesses the imposition of the lockdown in Nigeria. The model comprises of a system of five ODE. Mathematical analysis of the model were carried out, where boundedness, computation of equilibria, calculation of the basic reproduction ratio and stability analysis of the equilibria were carried out. We finally study the numerical outcomes of the governing model in respect of the approximate solutions. To this aim, we employed the effective ODE45, Euler, RK-2 and RK-4 schemes and compare the results.

18.
Numer Methods Partial Differ Equ ; 2020 Nov 24.
Article in English | MEDLINE | ID: covidwho-967861

ABSTRACT

In the Nidovirales order of the Coronaviridae family, where the coronavirus (crown-like spikes on the surface of the virus) causing severe infections like acute lung injury and acute respiratory distress syndrome. The contagion of this virus categorized as severed, which even causes severe damages to human life to harmless such as a common cold. In this manuscript, we discussed the SARS-CoV-2 virus into a system of equations to examine the existence and uniqueness results with the Atangana-Baleanu derivative by using a fixed-point method. Later, we designed a system where we generate numerical results to predict the outcome of virus spreadings all over India.

19.
Computers, Materials, & Continua ; 66(2):1977-1985, 2021.
Article in English | ProQuest Central | ID: covidwho-954689

ABSTRACT

The flow of novel coronavirus (COVID-19) has affected almost every aspect of human life around the globe. Being the emerging ground and early sufferer of the virus, Wuhan city-data remains a case of multifold significance. Further, it is of notable importance to explore the impact of unique and unprecedented public health response of Chinese authorities—the extreme lockdown of the city. In this research, we investigate the statistical nature of the viral transmission concerning social distancing, extreme quarantine, and robust lockdown interventions. We observed highly convincing and statistically significant evidences in favor of quarantine and social distancing approaches. These findings might help countries, now facing, or likely to face the wave of the virus. We analyzed Wuhan-based data of “number of deaths” and “confirmed cases,” extracted from China CDC weekly database, dated from February 13, 2020, to March 24, 2020. To estimate the underlying group structure, the assembled data is further sub-divided into three blocks, each consists of two weeks. Thus, the complete data set is studied in three phases, such as, phase 1 (Ph 1) = February 13, 2020, to February 26, 2020;phase 2 (Ph 2) = February 27, 2020 to March 11, 2020;and phase 3 (Ph 3) = March 12, 2020 to March 24, 2020. We observed the overall median proportion of deaths in those six weeks remained 0.0127. This estimate is highly influenced by Ph1, when the early flaws of weak health response were still prevalent. Over the time, we witnessed a median decline of 92.12% in the death proportions. Moreover, a non-parametric version of the variability analysis of death data, estimated that the average rank of reported proportions in Ph 3 remained 7, which was 20.5 in Ph 2, and stayed 34.5 in the first phase. Similar patterns were observed, when studying the confirmed cases data. We estimated the overall median of the proportion of confirmed cases in Wuhan as 0.0041, which again, is highly inclined towards Ph 1 and Ph 2. We also witnessed minimum average rank proportions for Ph 3, such as 7, which was noticeably lower than Ph 2, 21.71, and Ph 1, 32.29. Moreover, the varying degree of clustering indicates that the effectiveness of quarantine based policies is time-dependent. In general, the decline in coronavirus transmission in Wuhan significantly coincides with the lockdown.

20.
Computers, Materials, & Continua ; 66(2):1823-1848, 2021.
Article in English | ProQuest Central | ID: covidwho-953583

ABSTRACT

We propose a mathematical model of the coronavirus disease 2019 (COVID-19) to investigate the transmission and control mechanism of the disease in the community of Nigeria. Using stability theory of differential equations, the qualitative behavior of model is studied. The pandemic indicator represented by basic reproductive number R0 is obtained from the largest eigenvalue of the next-generation matrix. Local as well as global asymptotic stability conditions for the disease-free and pandemic equilibrium are obtained which determines the conditions to stabilize the exponential spread of the disease. Further, we examined this model by using Atangana–Baleanu fractional derivative operator and existence criteria of solution for the operator is established. We consider the data of reported infection cases from April 1, 2020, till April 30, 2020, and parameterized the model. We have used one of the reliable and efficient method known as iterative Laplace transform to obtain numerical simulations. The impacts of various biological parameters on transmission dynamics of COVID-19 is examined. These results are based on different values of the fractional parameter and serve as a control parameter to identify the significant strategies for the control of the disease. In the end, the obtained results are demonstrated graphically to justify our theoretical findings.

SELECTION OF CITATIONS
SEARCH DETAIL